Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal.

نویسندگان

  • Samira Musah
  • Stephen A Morin
  • Paul J Wrighton
  • Daniel B Zwick
  • Song Jin
  • Laura L Kiessling
چکیده

Reaping the promise of human embryonic stem (hES) cells hinges on effective defined culture conditions. Efforts to identify chemically defined environments for hES cell propagation would benefit from understanding the relevant functional properties of the substratum. Biological materials are often employed as substrata, but their complexity obscures a molecular level analysis of their relevant attributes. Because the properties of hydrogels can be tuned and altered systematically, these materials can reveal the impact of substratum features on cell fate decisions. By tailoring the peptide displayed to cells and the substrate mechanical properties, a hydrogel was generated that binds hES cell surface glycosaminoglycans (GAGs) and functions robustly in a defined culture medium to support long-term hES cell self-renewal. A key attribute of the successful GAG-binding hydrogels is their stiffness. Only stiff substrates maintain hES cell proliferation and pluripotency. These findings indicate that cells can respond to mechanical information transmitted via GAG engagement. Additionally, we found that the stiff matrices afforded activation of the paralogous proteins YAP/TAZ, which are transcriptional coactivators implicated in mechanosensing and hES cell pluripotency. These results indicate that the substratum mechanics can be tuned to activate specific pathways linked to pluripotency. Because several different hES and induced pluripotent stem cell lines respond similarly, we conclude that stiff substrata are more effective for the long-term propagation of human pluripotent stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs

Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepare...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

Establishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article

Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2012